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Abstract—The implosion of an ascending free gas bubble in an irrotational, incompressible and infinitely
extended liquid has been studied numerically. The method of collocation combined with the method of
characteristics to allow for multivalued solutions of the bubble radius has been applied. With this method
fragmentation resulting from buoyancy-induced deviations from the spherical bubble shape has been
described. In order to relate the results computed for gas bubbles to vapour bubbles, an estimation is
presented for the minimum radial rate of vapour implosion where liquid inertia dominates temperature
effects at the bubble boundary. In addition to a jet formation, the results show the detachment of small gas
bubbles during the inertia~controlled mode of implosion.

NOMENCLATURE

a, liquid thermal diffusivity [m?*s~!]; expan-
sion coefficient in series for velocity poten-
tial [m®*2*s~1];

a,, vapour thermal diffusivity [ms™!];

Ay, Ay, A5, coefficient in  characteristic equa-
tions (7) [m™'], [sm™!'] and [
respectively ;

Cppr specific heat of vapour or gas at constant
pressure [Jkg ' K™ '];

Copr specific heat of vapour or gas at constant
volume [Jkg ™ 'K™'];

F, N dimensional vector function, cf. equation
(10);

g gravitational acceleration [ms™2];

Ky, K,, K,, characteristics;

'.K5, base characteristics;

L, initial curve on integral surface I;

N, number of collocation points, N = k + 1;

P, liquid pressure [Pa];

P1s vapour or gas pressure, [Pa];

Ap, pressure difference = p, — p,. [Pa];

P, Legendre polynomial of order zero and
degree k;

r, radial coordinate in spherical coordinate
system [m];

R, bubble radius, coordinate of bubble wall
[m];

R,, undisturbed initial bubble radius [m];

s, parameter in equation (7);

t, time elapsed after start of bubble implosion
[s];

At, time step at numerical integration [s];

absolute temperature of liquid [K];
absolute temperature of vapour [K];
liquid velocity vector [ms~'];

liquid velocity in radial direction [ms~!];
gas velocity in radial direction [ms™'];
volume of a gas or vapour bubble [m?];
initial volume of a gas or vapour bubble

[m?].

Greek symbols

Yis
8’

P
g,

9,

,

Subscripts

iJs
k,

L
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Poisson’s constant of the gas;
disturbance in bubble radius [m];
azimuthal angle in spherical coordinates;
liquid coefficient of heat conduction
[Wkg™'m™'];

coefficient of heat conduction in gaseous
phase [Wkg 'm™'];

liquid kinematic viscosity [m?s™'];
liquid density [kg m™3];

saturated vapour or gas density [kg m™3];
surface tension coefficient [kgs™?];
liquid velocity potential [m?s™'];
circular frequency of bubble oscillations

[s™']

integer number denoting collocation point,
characterized by R{3,(t)} = R(¢);

integer number in series expansion for
velocity potential ;

integer number denoting characteristic
point characterized by R{9,(t)} = R(t);
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max, maximum value;

min, minimum value ;

tr, translation ;

0, initial, at t = 0;

7, far away from the bubble.
Superscripts

*, value, apply to p, = p_;
o, first differentiation with respect to time
[s™'1;
°, second differentiation with respect to time

[s72]

INTRODUCTION

HEaT transfer during nucleate boiling is the subject of
both experimental and theoretical investigations. For
practical applications, one is interested in obtaining
very high fluxes at low temperature differences between
heating surface and bulk liquid. This can be realized
under conditions of subcooled boiling, which occurs if
the temperature of the bulk liquid is below the
saturation temperature at ambient pressure. This
situation often occurs in industrial processes.

Under subcooled boiling conditions, a vapour bub-
ble which adheres to the superheated wall grows to a
certain maximum size. This is due to a simultaneous
implosion at the opposite side of the vapour-liquid
interface (bubble wall) which is adjacent to subcooled
bulk liquid. After departure the wall of the ascending
bubble will deform during implosion.

In this paper, deformation means deviation from the
spherical shape, and for free bubbles (i.e. bubbles in a
liquid without solid walls) the deviations are caused by
buoyancy forces only. For increasing degree of defor-
mation, the bubble might even split up into smaller
ones. This phenomenon is called fragmentation.

Although bubble growth and implosion have been
extensively investigated, little is known about the
physical process of bubble fragmentation. The trans-
fer processes of mass, momentum and energy at the
bubble wall are governed mainly by the flow field and
temperature distribution in the liquid, whereas the
flow- and temperature fields in the vapour phase are of
second order importance. The flow- and temperature
fields, in turn, are governed by the shape and motion of
the bubble wall. The boundary conditions of the
transfer processes for each region must be applied at
the moving bubble wall. However, the position and
the irregular shape of the bubble wall are not known
beforechand but are part of the solution sought.
Nevertheless, certain physical situations permit simpli-
fications of the mathematics.

For example, the thermal effects at the bubble wall
may be neglected if the motion of the bubble wall is
controlled by inertia effects of the liquid. Similarly, the
liquid can be treated as an incompressible fluid if the
bubble wall velocity is much less than the sonic speed
of the liquid. On the other hand, if thermal effects are
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dominant, the motion of the bubble wall is governed by
a thin thermal liquid boundary layer.

In this paper, a method is developed to describe
approximately the fragmentation phenomenon of one
free gas bubble in an infinitely extended, incom-
pressible and irrotational liquid. To solve this pro-
blem, we start from the basic equations of fluid
dynamics and we confine ourself to the calculation of
the liquid flow around the bubble. The resulting
equations for the position and shape of the bubble
boundary are solved numerically by means of the
method of collocation combined with the method of
characteristics. The latter method is applied to allow
for multivalued solutions of the equation describing
the (axially symmetric) bubble boundary as a function
of azimuthal angle and time.

2. MATHEMATICAL FORMULATION

The basic equations of continuity and momentum,
in combination with the relating boundary condition
form the starting point of the mathematical treatment
of the problem. The equation of state, p, = p, (p,, T),
for the gas or vapour in the bubble must be added to
complete the set of equations. The boundary con-
ditions apply to the situation of a free gas bubble in an
infinitely extended liquid. In the case of a moving
vapour-liquid interface, three boundary conditions
must be presented in order to obtain a well-posed
partial differential problem. These are obtained as
follows: One condition for the normal stress discon-
tinuity on the bubble boundary given by the Laplace
equation [ 1] for the surface tension, one condition for
the tangential stress discontinuity stating that tangen-
tial flow is introduced by surface tension gradients —
the Marangoni effect-——[2]—and one condition
for conservation of mass at the liquid-vapour in-
terface. In the latter case, it is assumed that the normal
liquid flow velocity at the liquid-vapour interface
equals the normal displacement rate of the bubble
boundary. Under this condition, the expression for the
conservation of mass at the liquid-vapour interface
reduces to the well-known kinematic boundary con-
dition that holds at an interface without phase tran-
sitions. As a result, only the equations for the liquid
have been taken into account. Shockwaves occur in the
liquid if, at the final stage of bubble implosion, the flow
velocity at the bubble wall has the same order of
magnitude as the liquid sonic speed. However this
stage is not taken into consideration, so the liquid may
be assumed to be incompressible i.e. both the liquid
density, p, and kinematic viscosity, v, are taken as
constant. In this way the equations of continuity and
energy have been uncoupled. The coupling between
the momentum equation and the energy equation still
exists via the pressure in the case of p = p(T).

Under the restrictions mentioned above the theory
for irrotational flow may be applied to the liquid
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outside the thin boundary layer around the bubble and
the continuity equation can be written as follows:

Vi$=0 1)

where u = V.

If only the phenomena are considered which occur
during a sufficiently short time after the onset of
motion of the bubble, that starts to translate (at t = 0),
both the hydrodynamic boundary layer and the wake
can be ignored. That is equation (1) holds and the
condition for the tangential stress discontinuity can be
disregarded. Under this restriction a well-posed pro-
blem was obtained. The momentum equation can then
be integrated, resulting in the Bernoulli equation for
the liquid pressure. Combination of the Laplace
equation for the surface tension and the Bernoulli
equation applied at the bubble boundary, r = R(9, 1)
results in the so-called dynamic boundary condition. If
the normal viscous stresses are neglected, the latter
condition, written in spherical coordinates, and as-
suming rotational symmetry in the horizontal plane
(see Fig. 1) is
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] =0,r=R(51). (2)

The kinematic boundary condition in the same coor-
dinates is expressed by

R 3

1 8¢ R
ot or

+ RE3990 0, r=R(&1.  (3)
Equation (1) and the boundary conditions (2) and (3)
represent the set of equations to be solved in com-
bination with prescribed initial conditions and gas
pressure p,.

It is important to emphasize here that equation (2),
and in particular equation (3), may generally be

%

Fic. 1. Bubble with coordinates r, 3 and R.
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applied tor = R, (3, t), which results in a multivalued
solution for the bubble radius at a discrete angleand a
fixed time (see Section 3.2. and Fig. 3).

3. METHOD OF SOLUTION

3.1. The collocation method

The solution of equation (1) for rotational symmetry
without singularities in 3 = 0 and r — = has the
following form:

x

o(r. %= 3 al)

k=0

1
FT P,(cos 3). 4)
For the velocity potential at discrete angles, 3, at the
bubble boundary the following expression holds:

3¢ 06 dR

— 4+ ——, r=R(3, ).
at+ar dr r=RO.0. O

d
a’t“b(r» ‘gl‘v t) =

Substitution of equations (2) and (3) into equation (5)
results in the dynamic boundary condition at r =
R(9, 1) as it has been used for numerical integration.

An expression for the bubble radius in the form of a
series expansion similar to equation (4) can only be
used if the bubble radius is single-valued, i.e., if for
every angle, 9, there is only one value R({). However,
this latter restriction is not satisfied when bubble
implosion and fragmentation are considered. In prin-
ciple, the equations (2) and (4) in combination with an
expression for the bubble radius, R = R(9, 1), and with
the initial conditions and the condition for p,, can be
used to describe the flow-field and the coordinates of
growing or imploding bubbles [4-7, 11]. Zijl et al.
[4, 6, 11] and Joosten et al. [7] applied the (global,
orthogonal) collocation method [10] to solve this set
of equations numerically.

In equation (4) the series is truncated after N terms.
The 1-dim. bubble boundary is discretized into N so-
called collocation points, each of them representing a
value of 3: the collocation angles 3;.

The expansion coefficients, q,(t), k = 0,... N — 1,
are chosen in such a way, that only at these collocation
angles, the solution of the truncated series (4) satisfies
the boundary conditions equations (4) and (5). It is
noted that the values of cos 9, are chosen as the zeros of
a Legendre polynomial. In that case, convergence to
the exact solution for N —» o can be guaranteed [4, 8,
11].

3.2. The method of characteristics

Generally, the bubble radius R = R{J, 1) is not
single-valued for an imploding bubble (see Fig. 3).
Hence, the expansion of the bubble radius in a
complete set of Legendre polynomials (see Section
3.1.) is useless for finding a multivalued solution of the
bubble radius. Therefore, the kinematic boundary
condition (3) will be considered as a quasi-linear
partial differential equation (P.D.V.} of the following
form:
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where A,, 4,, A; are coefficients.

Suppose R = R{3, t} is a solution of the P.D.V_(6).
This solution corresponds to an integral surface in the
3-dim. (3, 1, R}-continuum with orthogonal coordinates.
On the integral surface, characteristic curves can be
constructed [9]. By means of the parametric repre-
sentation, 3 = Hs), t = t{s), R = R(s), of these
characteristics, the equations for the characteristics
take the following form:

ds dt dR
— = A,(% t, R), = = A,(8, t),—— = A5(3, t, R).
= A5 R = A48 0, = 433 1, R)

7

The uniqueness of equation (7) is guaranteed if initial
conditions are prescribed on an initial curve which is
not a characteristic itself i.e.

Hso) = B0 1(Se) = Lo, R(5e) = Ry

Now equations {6) and (7) will be compared with
equation (3). Substitution of s = ¢ into equation (7)
results in the characteristics of equation (3) and they
have the following form:

ds 1 &¢

B 8
dr R @9 @®
R _ (2%

dt ~\or /. 9)

Using equations (8} and {9), 2 multivalued solution of
the bubble radius is possible and finds expression in
the intersection of the base characteristics i.e. in the
projections of the characteristics in the §, t-plane (Fig.
2). Consequently, when using the method described
above, the deformed bubble boundary may have
different bubble radii at one discrete angle and one
fixed time (Fig. 3).

4. THE NUMERICAL METHOD

The collocation method described in Section 3.1. is
applied to solve the equations (2)-(4) and results in a
set of N coupled, non-linear ordinary differential
equations for the velocity potential

(%én- =F(R;, ¢}, i =0(1)N — 1 {10
where
$:(6) = SIR(D), %O} = 3
k=0
1 k+ 1 )
[{m} P (cos "li)Jak(I) (1)
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F1G. 2. Integral surface I with characteristics K ; and K, from

the initial curve L at 3, respectively 3,. The base characteri-

sitics K| and K’ show a multivated solution of R(3, t) in the
point of intersection J.

with
Ry{t) = R(3; 1).

The matrix equation (11} must be solved for every
timestep. This can be performed by numerical stan-
dard routine (LU decomposition). The initial con-
ditions are

¢{0) =0, R(0) =0. (12)
However, at the collocation points, where the velocity
potential (11) has to be determined for reasons men-
tioned in Section 3.1, an equation for the bubble

radius, Ry{t), is missing. Hence a linear interpolation
procedure is introduced.

R = R+ 1A% + RAS, ., {9, < 8 < 34y (13)
A%+ AYL, T U=1N +1

where R{t) = R{¥,t)denotes the characteristic bubble

radius, i.e. the coordinate of a characteristic point that

coincides with both the bubble wall and the

characteristic,

The discrete interpolation angles, A3, and AY,, ,,
chosen between the collocation angles, serve as weight-
ing factors such that R{t) coincides the adjacent
characteristic radius for A%, = 0 or A%, = 0.
Moreover, even for large deformations of the bubble
wall, the volume of the bubble can be exactly de-

FiG. 3. Three-valued solution of the bubble radius: R,, R,
and R;. The characteristics K, K, and K, do not intersect.
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termined by rotationally symmetric integration if the
1-dim. bubble wall is described by R, of equation (13)
with continuous variable A9, [12].

The numerical procedure to be used is as follows:

(1) Initially the coefficients a,(0) will be determined
by means of equations (11)and (12), and the derivatives
0¢;/03 and d¢,/0r can be calculated analytically.

(i1) Initially the characteristic points are chosen at
the bubble wall between the collocation points. The
derivative 0¢,/03 and d¢,/dr will be calculated using
the matrices P, (cos %), {dp(cos $)/d3},

(iti) After each timestep, At, the new characteristic
radii will be determined with equations (8) and (9). In
the examples presented in this paper a simple Euler
integration method has been used.

(iv) Both the bubble radii and their derivatives have
been determined at the collocation angles applying
linear interpolation see equation (13).

(v) d¢,/dt has been calculated using equation (5) for
time . Subsequently, using the Euler method, the new
¢; has been calculated at a time ¢+ + Ar at the
collocation points. After this, the procedure was
repeated for each timestep consecutively.

5. COMPRESSIBILITY EFFECTS

5.1. Spherically symmetric vapour bubble implosion

It is significant to compare the numerical results to
those of suitable experiments on vapour bubbles. At
present, only the buoyancy-induced deformation of a
translating bubble has been taken into account (see
Section 2). Consequently, thermal and diffusive effects
are neglected in the analysis. However, for an imploding
vapour bubble, heat diffusion will be of importance. In
this case, heat of condensation is liberated at the
bubble boundary and the energy has to be involved in
the analysis. Nevertheless, the vapour in the bubble can
be treated as a compressible gas if no condensation
occurs. Therefore, to conclude whether the numerical
results are applicable to vapour bubbles, it is necessary
to check during which stage of the bubble implosion
the thermal and compressibility effects are important.

In this respect, the behaviour of the gas or vapour
phase for a radially imploding (or expanding) bubble
in a subcooled (or superheated) liquid will be
considered.

5.2. Compressible bubbles
Since p, « p, disturbances in the pressure of the
gaseous phase within a closed volume are damped
away much more rapidly than in the liquid.
Consequently, if viscosity effects are neglected, the
pressure in the gaseous phase may be assumed to be
homogeneous i.c.

Vp, =0. (14)

For simplicity a spherical bubble is considered. Con-

HMT 25:8 - C
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servation of total mass at the spherical liquid—vapour
interface results in

pi(uy — R) = p(u — R). (15)
In the case under consideration where phase tran-
sition, i.e. condensation, at the interface is excluded,
equation (15), under the condition p, « p, becomes
equivalent to the well-known kinematic boundary
condition u = R.

The thermal boundary condition at the vapour—
liquid interface r = R(t) is given by

aT 0T, B _
/1<5_r>,=g -4 <?>y=R = Pll(R u;). (16)

Equation (16) expresses that the heat required for
condensation or evaporation must be removed or
supplied by conduction through the liquid and the
vapour adjacent to the bubble boundary. With the
help of the equations of continuity and energy for the
vapour taken as an ideal gas without viscous dissi-
pation, in combination with equation (14), Cho and
Seban [13] derived the following expression for the
radial vapour velocity at the interface:

1 - oT
U =— {cﬂ—p' Co, <)~1 —1>
pl pr ﬁr r=R

dp; R,

. r=R (17
dr 3(b1} ’ 47)

Under the assumption 4, « A and a, » a, the
temperature differences in the vapour can be neglected.
Combination of equation (16) and equation (17)
results then in

oT
l<57>r—R B pll<R *

When the absolute value of the first term between
brackets in the RHS of equation (18) is much larger
than the second one, condensation or evaporation
occurs at the bubble boundary during implosion or
growth respectively and compressibility effects may be
neglected. However, if A(6T/dr),-x = 0 in the LHS of
equation (18), heat transfer effects at the bubble
boundary may be neglected and compressibility of the
vapour dominates implosion or growth. According to
equation (18), for sufficiently small disturbances in the
vapour pressure, the vapour can thus be treated as a
compressible gas, if

dp, R ¢,

— ), r=R. (18)
dt 3p, c,,

1dR 1

~

_ dp,
3,y dt

(19)

In turn, if equation (19) is satisfied, the implosion is
governed by liquid inertia and the bubble radius is
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given by the so-called Rayleigh-Plesset equation [14]

" 3 p1— 7P 20
RR+-ZR? =" . T 20
+5 5 R (20)
This equation can also be derived from equation (5)
and equation (4) for k = 0, i.e. in case of a spherically
symmetric flow field.
Let the perturbation in the bubble radius be repre-
sented by
R(t) = Ry + &l1). (21)
In the following discussion it will be assumed that | e(t)]
« Ry in such a way, that terms in powers of ¢, & and
higher derivatives greater than one may be neglected.
Substitution of equation (21) into equation (20) and
linearization results in

Py — Py

Ry = (22)

if the surface tension term has been neglected.
Comparison of equation (22) with the first and
second terms between brackets in the RHS of equation
(18) shows that these terms have amplitudes of &(t,)/@
and &(to)wpR3/3p_ 7, respectively. Consequently, the
vapour can be treated as a compressible gas if

{pREwito)yip. ) » {1o)/w) or

<3y1 pu, >1 2 1
w >~ -_—.
P R,
Provided that (1/R,)|R| =~ w, substitution of w into

equation (23) results in |dR/dt| =~ (3py,/p)'/%, con-
sequently, it follows that the vapour behaves as a

compressible gas if
17,2
S (3%1)“) .
p

On the other hand, if |[dR/dt| « (3p,y,/p)', mainly
condensation occurs and compressibility effects of the
vapour may be neglected. Supposing that a point fixed
at the imploding bubble wall follows the largest
deformation from onset. Possibly, such a deformation,
or the resulting fragmentation, can be expected at
vapour bubbles if the radial velocity of the bubble wall
at that point satisfies condition (24). Nevertheless all
examples presented in Section 6 satisfy condition (24).

(23)

dR

s (24)

6. NUMERICAL EXAMPLES

6.1. Rotationally symmetric bubble implosion
For gas bubbles, the pressure p, in equation (2) is
replaced by the isentropic law
pi(t) = pr olVo/V(O) (25)

We consider the hypothetical case of y, = 1,i.e. when
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Direction of translation
1 axis of symmetry

& /i

F1G. 4. Numerically calculated profile of a free translating

isothermal gas bubble, imploding in a pressure field at various

instants, N = 9. Curve (1): p; = 1.9kPa, t;, = 10.0000 ms,

Curve (2):p, = 4.55kPa,t, = 10983 ms,p, = 1kPa,p, , =

025 kPa, R, = 10mm, y, = 1, p = 10®°kgm™ g =
9.81ms~ 2

equation (25) represents the ideal gas law, this case
applies to isothermal (gas) implosion. During im-
plosion, the internal pressure is increasing according
to equation (25) and, due to the inertia of the liquid, it
exceeds the liquid pressure p_ after a certain time.
Consequently, the bubble will start growing and, for
sufficiently large times, the bubble volume oscillates.
Here, only the first implosion stage has been con-
sidered with p () given by equation (25). However, the
bubble will hardly implode for realistic values of the
internal pressure, p,(t), and the liquid pressure, p_,
(e.g. for p, = 100kPa and p,(0) = 99kPa, the ratio
R*/R, = 099, where R* = R(t*) is the radius of the
spherical bubble at advanced implosion with internal
pressure p,(t*) = p_). Therefore, some calculations
have been made at a pressure difference Ap = p, — p.
= P10 — P, = constant, i.e. the implosion rate has
not been slowed down by the compressibility of the gas
(Figs. 6 and 7). Figs. 4-6 show nearly the same bubble
shape for both isothermal implosion and implosion
with constant Ap. Therefore, it seems to be justified to
study bubble deformation during implosion at con-
stant internal pressure. Since, due to buoyancy (see
Section 2), the bubble translates and the origin of the
coordinate system has been fixed at the bubble centre.
The translation velocity of the origin u,, (initially u,, =
0) is positive in the direction opposite to gravitational
acceleration and it is defined by ${R(n, t) — R(0,1)}.In
the figures the origins coincide for the different im-
plosion stages. Because of the rotational symmetry (see
Section 2) the bubble shape at various instants has
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Direction of transliation
axis of symmetry
—

(2)

n

(O) ¢

F1G. 5. Numerically calculated profile of a free translating
isothermal gas bubble, imploding in a pressure field at various
instants, N = 5. Curve (1): p; = 1.77kPa, t; = 9950 ms,
Curve (2): p, =5.88 kPa, t, =11.021 ms, other values as Fig. 4.

Direction of transiation
J axis of symmetry

Characteristics

F1G. 6. Numerically calculated profile of a free translating
hollow_ cavity, imploding in a pressure field at various
instants, N = 9. A small bubble detaching at its rear. Curve
(1) t; = 7.000ms, Curve (2) t, = 9.000ms Curve (3) t, =
9.092ms. p, = 0kPa, other values as Fig. 4.
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Direction of translation
axis of symmetry

FiG. 7. Numerically calculated profile of a free translating

hollow cavity, impliding in a pressure field at various instants,

N = 9. Onset of detachment as well at the top of the bubble as

atitsrear. Curve (1)¢;, = 1.0970 ms, Curve (2) ¢, = 1.0977 ms,

Curve (3)t; = 1.0977ms. p,, = 100kPa, p; = 20kPa, other
values as Fig. 4.

been drawn for values of 3 in the interval [0, =]
Initially [situation (0)], N + 1 characteristic points R,
are chosen at the bubble wall. The radially directed
drawn curves are characteristics, the dashed curves are
the collocation angles, see Figs. 4-8.

The examples that follow have been calculated with
the Burroughs B-6700 computer of the Eindhoven
University of Technology.

6.2. Compressible bubbles

Figure 4 shows an imploding gas bubble at an initial
pressure p,(t) according to equation (25). The maxi-
mum radial velocity of the bubble wall | R(t)] e for { =
9 and t, < t < t, shows physically realistic values
around the sonic speed of water (1.5.10° ms™ ') while
|R(t)|min = 213ms™ " for I = 2 and |R(t;)|min =
1.90ms~ ! for | = 3. Also fragmentation occurs: a
small bubble detaches at the rear of the original one
(see also the inset of Fig. 6). For t = t,, the implosion
rate has almost been slowed down completely. The
imploding gas bubble, shown in Fig. 5, differs only with
the conditions used in Fig. 4 for N = 5 although both
figures show nearly the same bubble shape. Also the
numerically calculated radial velocities of the bubble
wall agree for the various instants of Figs. 4 and 5. They
amount for ¢ = t;, |[R;9(t))|max = 2.1 ms™ ! (Fig. 4)
respectively |R,_s(t;)|mex = 2.3ms™' (Fig. 5). The
corresponding theoretical value, given by equation (24)
for both Fig. 4 and Fig. 5 [see text, Section 5.2. after
equation (24)]is R = 1.7 ms™'. Both Fig. 4 and Fig. 5
show a multivated solution for t = ¢, because §,_4 <
% _10and 9,_5 < 9 ¢ respectively.
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Direction of transiation
axis of symmetry
[ ekt Al

F1G. 8. Deformation of an accelerated bubble at a pressure of

1kPa; tongue formation occurs at the rear of the bubble, N

= 5.Curve(l)t, = 23.500ms, Curve (2)¢, = 24.813ms,p, =
p, = lkPa other values as Fig. 4.

6.3. Imploding bubbles with constant internal pressure

Figure 6 shows an imploding hollow cavity. This
shows that the implosion rate has not been slowed
down by the compressibility of the gas. However, there
isavery good agreement with the bubble shapes shown
in Fig. 4 and Fig. 5 (see Section 6.1.). The inset of Fig. 6
for t = t; shows clearly a multivalued solution of the
bubble radius (dotted line) the detachment of a small
bubble at the rear ie. fragmentation. The maximum
radial velocity of the bubble wall |R(t)] ., = 447 x
10%ms forl =9t = t;and 7.0ms 'forl = 9,1 =
t,. For all instants |R,(#)]e < 3.66ms %

Figure 7 shows an imploding gas bubble with
constant internal pressure. Here, in contradistinction
to Fig. 6, deformation of the bubble wall occurs for R
< 107 m due to the large value of |[Ap| = 80kPa.
There multivalued solution of R(3, ;) because §,., <«
9, - ;. The maximum radial velocity of the bubble wall
|R(t)lmax = 3.03 x 10°ms™!forl = 10,¢ = t, and
176 x 10®ms~ ! for [ = 10,t = t,. For all instants
[Ri()|min < 470.1ms™* holds,

Figure 8 shows the deformation of the bubble wall of
an accelerated ascending bubble for Ap = 0. The
deformation can be followed via the characteristics.
The ultimate shape for t > 24.813ms is a toroidal
bubble, in agreement with experimental results of
Walters and Davidson [16].

Finally, the calculated initial acceleration for Figs.
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4-8 equals 2¢g in agreement with Walters and David-
son [16] and Zijl [5].

7. CONCLUSIONS

For almost all calculated examples, the maximum
radial velocity of the bubble wall at large rates of
deformation or fragmentation is of the order of
magnitude of the liquid sonic speed. When this occurs
the compressibility of the liquid, which has been
neglected in this paper, needs to be taken into account.
Otherwise it is observed that large rates of deformation
or fragmentation of the bubble wall occur in the
situation where bubble implosion is controlled by
inertia of the liquid. Plesset and Mitchell [17] in-
vestigated the stability of perturbation terms of ex-
panding and collapsing bubbles, assuming the press-
ure inside the bubble to be constant. They conclude
that an expanding bubble is stable while an imploding
one is not. In the latter case the distortion amplitude
grows as R "' * when the bubble radius R tends to zero.
The buoyancy term gRcos /} in equation (2) accounts
for deformation only and not for instability.

Evidently, the initial perturbations, expressed by the
coefficients 4,{0) # 0,k = 1{1)N, g = 0, agree with the
so-called Taylor instabilities [18]. A combination of
gravitational effect and Taylor instability results in the
presented deformations. For advanced implosion, e.g.
for decreasing R, the latter effect dominates the effect of
gravitation (gRcos ) in agreement with the numerical
examples. Fragmentation of vapour or gas bubbles can
be described with the method of characteristics com-
bined with the method of collocation as presented
here. Detachment of small bubbles from the original
bubble occurs in combination with well-known jet
formation at the rear of the bubble : the accompanying
translation velocity u,, changes very fast.

REFERENCES

1. L. D. Landau and E. M, Lifshitz, Fluid Mechanics.
Pergamon Press, Oxford (1959).

2. V. G. Levich, Physiochemical Hydrodynamics. Prentice-
Hall, Engelwood Cliffs, New Jersey (1962).

3. G. K. Batchelor, An Introduction to Fluid Dynamics.
Cambridge University Press, Cambridge (1976).

4. W. Zijl, The hydrodynamics of vapour and gas bubbles
by numerical approximations methods, in Boiling Pheno-
mena, (edited by S. J. D. van Stralen and R. Cole).
Hemisphere, Washington D. C. (1979). A more detailed
review is given in [11].

5. W. Zijl, Global collocation approximations of the flow
and temperature fields around a gas and vapour bubble,
Int. J. Heat Mass Transfer 20, 437-498 (1977).

6. W. Zijl, F. J. M. Ramakers and S. J. D. van Stralen,
Global numerical solutions of growth and departure of a
vapour bubble at a horizontal superheated wall in a pure
liquid and a binary mixture, Int. J. Heat Mass Transfer
22, 401-420 {1979).

7. J.G. H. Joosten, W, Zijl and S. J. D. van Stralen, Growth
of a vapour bubble in combined gravitational and non-
uniform temperature fields, Int. J. Heat Mass Transfer
21, 15-23 (1978).

8. L. Fox and 1. B. Parker, Chebycher Polynomials in



10.

11.

12.

13,

Gas bubble implosion and fragmentation

Numerical Analysis. Oxford University Press, London
(1968).

. R. Courant and D. Hilbert, Methods of Mathematical

Physics, Vol. 2, Partial Differential Equations. Inter-
science, New York (1962).

B. A. Finlayson, The method of weighted residuals and
variational principles, in Mathematics in Science and
Engineering, Vol. 87. Academic Press, New York (1972).
W. Zijl, Departure of a bubble growing on a horizontal
wall, Ph.D. thesis, University of Technology, Eindhoven,
The Netherlands.

W. M. Sluyter, Master thesis, Eindhoven University of
Technology (1978).

S. M. Cho and R. A. Seban, On some aspects of steam
bubble collapse, Am. Soc. Mech. Engrs Series C, J. Heat
Transfer 91, 537-542 (1969).

14,

15.

16.

17.

18.

1

Lord Rayleigh, On the pressure developed in a liquid
during the collapse of a spherical cavity, Phil. Mag. 34,
94-98 (1917).

S. M. Cho and R. A. Seban, Oscillation of a gas bubble in
an infinite fluid, Am. Soc. Mech. Engrs, Series C, J. Heat
Transfer 91, 157-159 (1969).

J. T. K. Walters and J. F. Davidson, The initial motion of
a gas bubble formed in an inviscid liquid, J. Fluid Mech.
17, 321-337 (1963).

M. S. Plesset and T. P. Mitchell, On the stability of the
spherical shape of a vapour cavity in a liquid, Q. Appl.
Math. 13, 419-430 (1956).

G. 1. Taylor, The instability of liquid surfaces when
accelerated in a direction perpendicular to their planes,
Proc. R. Soc., Lond. A201, 192-196 (1950).

APPLICATION DE LA METHODE DES CARACTERISTIQUES A LA RESOLUTION
NUMERIQUE DE L'TMPLOSION ET DE LA FRAGMENTATION DES BULLES DE GAZ

Résumé—On étudie numériquement I'implosion d’une bulle ascendante de gaz dans un liquide irrotationnel,
incompressible et infiniment étendu. La méthode de collocation combinée avec la méthode des caractéristi-
ques a été appliquée aux solutions du rayon de la bulle. Avec cette méthode est décrite la fragmentation
résultant des déviations, induites par les forces d’Archiméde, 4 partir de la forme sphérique de la bulle. De
fagon a relier les résultats calculés pour les bulles de gaz et de vapeur, on présente une estimation de la vitesse
radiale minimale d’implosion quand I'inertie de liquide domine les effets de température a la frontiére de la
bulle. Les résultats montrent qu'en plus de la formation d’'un jet, il y a un détachement de petites bulles de gaz
pendant le mode d'implosion contrélé par I'inertie.

ANWENDUNG DES CHARAKTERISTIKEN-VERFAHRENS BEI DER NUMERISCHEN
LOSUNG DES IMPLOSIONS- UND FRAGMENTATIONS-VERLAUFS VON GASBLASEN

Zusammenfassung—Die Implosion einer aufsteigenden freien Gasblase in einer rotationsfreien, inkompres-
siblen, unendlich ausgedehnten Fliissigkeit wurde numerisch untersucht. Um mehrdeutige Losungen fiir den
Blassenradius in Betracht zu ziehen, wurde die mit dem Charakteristiken-Verfahren kombinierte K olloka-
tions-Methode angewandt. Mit diesem Verfahren wurde die durch auftriebsbedingte Abweichung von der
Kugelform hervorgerufene Fragmentation beschrieben. Um die Beziehung der fiir Gasblassen berechneten
Ergebnisse zu Dampfblasen herzustellen, wird fiir die minimale radiale Dampf-Implosions-Geschwindigkeit,
bei der die Trigheits-Effekte der Fliissigkeit gegeniiber thermischen Effekten an der Blasengrenze noch
iiberwiegen, eine Abschitzung angegeben. Neben der Ausbildung eines Strahls zeigen die Rechenergebnisse
die Ablosung kleiner Gasblasen wihrend der durch Tragheitskrifte bestimmten Implosionsphase.

YUCJIEHHOE UCCIEOOBAHUE MPOLUECCA CXJIONBIBAHUA U OPOBJIEHHUS
T'A30BbIX TMY3BIPLKOB METOJAOM XAPAKTEPUCTHUK

Annorauns — [1poBeseHO YHCIEHHOE HCCIIEA0BaHHE CXJIONBIBAHASA CBOGOIHO BCIUILIBAIOLLETO ra30BOro
Ny3bIpbKa B HEOTPAHMYEHHOM O0BEME HEMOIBHXKHON HEC)KHMAEMON XHMAKOCTH. B pelnenun 3agaun o
paguyce Ny3bIpbKOB HCTONB30BAJICA METOA KOJIJIOKAIMi B KOMOMHALMM C METOAOM XapaKTEPHCTHK,
4TO MO3BOJIWIO MOJYYHTH HECKOIBKO PCLICHHH. JTO a0 BO3MOXHOCTh OMHCAThH OPOOJICHHE My3bIPb-
KOB, IPOMCXOJALLIEE B Pe3YIbTAaTe HX OTKJIOHEHHS OT cepnyeckoii GopMbl 104 AHCTBHEM NMOABEMHbIX
cun. [dns o6GoOlueHHss pe3ynbTaTOB, NOJYHEHHBIX [UIA Ta30BbIX MY3BIPDbKOB, Ha Ciyyaif mapoBmiX
Ny3bIPbKOB [POBEJEHA OLCHKA MHMHMMANbHOH PaJMalIbHON CKOPOCTH MCHAapEeHHS BHYTPb Ny3bIpbKa,
KOIZa MHEpUHs XHAKOCTH NpPEBajJHpYeT HaA TeMnepaTyPHbIMH d¢bdekTaMu Ha rpaHuie. PesymbTathi
MIOKA3bIBAIOT, YTO MOMHMO O00pa30BaHUA CTPYH B TEYEHHE BCETO MEPHOIA CXJIONbIBAHHS MPOHCXOAHT
OTPBIB HEGOJIBLIMX [a30BbIX NY3bIPHKOB.



