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Abstract-The implosion of an ascending free gas bubble in an irrotational, incompressible and infinitely 
extended liquid has been studied numerically. The method of collocation combined with the method of 
characteristics to allow for multivalued solutions of the bubble radius has been applied. With this method 
fragmentation resulting from buoyancy-induced deviations from the spherical bubble shape has been 
described. In order to relate the results computed for gas bubbles to vapour bubbles, an estimation is 
presented for the minimum radial rate of vapour implosion where liquid inertia dominates temperature 
effects at the bubble boundary. In addition to a jet formation, the results show the detachment of small gas 

bubbles during the inertia-controlled mode of implosion. 

NOMENCLATURE 

6 liquid thermal diffusivity [m’ s- ‘1; expan- 
sion coefficient in series for velocity poten- 
tial [m 3+2ks-1 I; 
vapour thermal diffusivity [m s- ‘I; 

%, A,, A,, coefficient in characteristic equa- 
tions (7) [m-l], [sm-I] and C-1 
respectively ; 

cPl, specific heat of vapour or gas at constant 
pressure [J kg-’ K-l]; 

cv,* specific heat of vapour or gas at constant 
volume [J kg-’ K-l]; 

F, N dimensional vector function, cf. equation 

(10); 
gravitation4 acceleration [m s- ‘1; 

k, K,, K,, characteristics; 
K’,, K;, base characteristics ; 
L-3 initial curve on integral surface I ; 
N, number of collocation points, N = k + 1; 

P> liquid pressure [Pa] ; 

Pl, vapour or gas pressure, [Pa]; 

APT pressure difference = pi - p, [Pa] ; 

‘k, Legendre polynomial of order zero and 
degree k ; 

r, radial coordinate in spherical coordinate 
system [m] ; 

R bubble radius, coordinate of bubble wall 

Cm1 ; 
Rot undisturbed initial bubble radius [m] ; 
s, parameter in equation (7); 
t, time elapsed after start of bubble implosion 

Csl ; 
At, time step at numerical integration [s] ; 

T, 
T,* 
u, 
11, 
111, 

V, 
V 09 

absolute temperature of liquid [K] ; 
absolute temperature of vapour [K] ; 
liquid velocity vector [m s- ‘1; 
liquid velocity in radial direction [m s- ‘1; 
gas velocity in radial direction [m s- ‘I; 
volume of a gas or vapour bubble [m”] ; 
initial volume of a gas or vapour bubble 

b”l. 

Greek symbols 

Poisson’s constant of the gas ; 
disturbance in bubble radius [m] ; 
azimuthal angle in spherical coordinates; 
liquid coefficient of heat conduction 
[W kg-‘m-‘1; 
coefficient of heat conduction in gaseous 
phase [W kg-’ m-l]; 
liquid kinematic viscosity [m’ s- ‘1; 
liquid density [kg mm31 ; 
saturated vapour or gas density [kg m-“1 ; 
surface tension coefficient [kg s-‘3 ; 
liquid velocity potential [mZ s- ‘1; 
circular frequency of bubble oscillations 
[s- ‘I. 

Subscripts 

i, j, integer number denoting collocation point, 
characterized by R{&(t)} = R,(t); 

k, integer number in series expansion for 
velocity potential; 

I, integer number denoting characteristic 
point characterized by R{$(t)} = R,(t); 



1104 W. M. S1.r YTFR. S. J. D. VAN STRALEN and W. ZIJL 

max, maximum value ; 
min, minimum value ; 
tr. translation ; 
0. initial, at t = 0; 
%, far away from the bubble. 

Superscripts 
* value, apply to p1 = p, ; 

first differentiation with respect to time 

rs-'1; . . 
second differentiation with respect to time 
[SC’]. 

INTRODUCTION 

HEAT transfer during nucleate boiling is the subject of 
both experimental and theoretical investigations. For 
practical applications, one is interested in obtaining 
very high fluxes at low temperature differences between 
heating surface and bulk liquid. This can be realized 
under conditions of subcooled boiling, which occurs if 
the temperature of the bulk liquid is below the 
saturation temperature at ambient pressure. This 
situation often occurs in industrial processes. 

Under subcooled boiling conditions, a vapour bub- 
ble which adheres to the superheated wall grows to a 
certain maximum size. This is due to a simultaneous 
implosion at the opposite side of the vapour-liquid 
interface (bubble wall) which is adjacent to subcooled 
bulk liquid. After departure the wall of the ascending 
bubble will deform during implosion. 

In this paper, deformation means deviation from the 
spherical shape, and for free bubbles (i.e. bubbles in a 
liquid without solid walls) the deviations are caused by 
buoyancy forces only. For increasing degree of defor- 
mation, the bubble might even split up into smaller 
ones. This phenomenon is called fragmentation. 

Although bubble growth and implosion have been 
extensively investigated, little is known about the 
physical process of bubble fragmentation. The trans- 
fer processes of mass, momentum and energy at the 
bubble wall are governed mainly by the flow field and 
temperature distribution in the liquid, whereas the 
flow- and temperature fields in the vapour phase are of 
second order importance. The flow- and temperature 
fields, in turn, are governed by the shape and motion of 
the bubble wall. The boundary conditions of the 
transfer processes for each region must be applied at 
the moving bubble wall. However, the position and 
the irregular shape of the bubble wall are not known 
beforehand but are part of the solution sought. 
Nevertheless, certain physical situations permit simpli- 
fications of the mathematics. 

For example, the thermal effects at the bubble wall 
may be neglected if the motion of the bubble wall is 
controlled by inertia effects of the liquid. Similarly, the 
liquid can be treated as an incompressible fluid if the 
bubble wall velocity is much less than the sonic speed 
of the liquid. On the other hand, if thermal effects are 

dominant, the motion of the bubble wall is governed by 
a thin thermal liquid boundary layer. 

In this paper, a method is developed to describe 
approximately the fragmentation phenomenon of one 
free gas bubble in an infinitely extended, incom- 
pressible and irrotational liquid. To solve this pro- 
blem, we start from the basic equations of fluid 
dynamics and we confine ourself to the calculation of 
the liquid flow around the bubble. The resulting 
equations for the position and shape of the bubble 
boundary are solved numerically by means of the 
method of collocation combined with the method of 
characteristics. The latter method is applied to allow 
for multivalued solutions of the equation describing 
the (axially symmetric) bubble boundary as a function 
of azimuthal angle and time. 

2. MATHEMATICAL FORMULATION 

The basic equations of continuity and momentum, 
in combination with the relating boundary condition 
form the starting point of the mathematical treatment 
of the problem. The equation of state, p1 = p1 (pl, T), 
for the gas or vapour in the bubble must be added to 
complete the set of equations. The boundary con- 
ditions apply to the situation of a free gas bubble in an 
infinitely extended liquid. In the case of a moving 
vapour-liquid interface, three boundary conditions 
must be presented in order to obtain a well-posed 
partial differential problem. These are obtained as 
follows: One condition for the normal stress discon- 
tinuity on the bubble boundary given by the Laplace 
equation [l] for the surface tension, one condition for 
the tangential stress discontinuity stating that tangen- 
tial flow is introduced by surface tension gradients - 
the Marangoni effect-[2]-and one condition 
for conservation of mass at the liquid-vapour in- 
terface. In the latter case, it is assumed that the normal 
liquid flow velocity at the liquid-vapour interface 
equals the normal displacement rate of the bubble 
boundary. Under this condition, the expression for the 
conservation of mass at the liquid-vapour interface 
reduces to the well-known kinematic boundary con- 
dition that holds at an interface without phase tran- 
sitions. As a result, only the equations for the liquid 
have been taken into account. Shockwaves occur in the 
liquid if, at the final stage of bubble implosion, the flow 
velocity at the bubble wall has the same order of 
magnitude as the liquid sonic speed. However this 
stage is not taken into consideration, so the liquid may 
be assumed to be incompressible i.e. both the liquid 
density, p, and kinematic viscosity, V, are taken as 
constant. In this way the equations of continuity and 
energy have been uncoupled. The coupling between 
the momentum equation and the energy equation still 
exists via the pressure in the case of p = p(T). 

Under the restrictions mentioned above the theory 
for irrotational flow may be applied to the liquid 
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outside the thin boundary layer around the bubble and 
the continuity equation can be written as follows: 

v2f$ = 0 (1) 

where u = V+ 
If only the phenomena are considered which occur 

during a sufficiently short time after the onset of 
motion of the bubble, that starts to translate (at t = 0), 
both the hydrodynamic boundary layer and the wake 
can be ignored. That is equation (1) holds and the 
condition for the tangential stress discontinuity can be 
disregarded. Under this restriction a well-posed pro- 
blem was obtained. The momentum equation can then 
be integrated, resulting in the Bernoulli equation for 
the liquid pressure. Combination of the Laplace 
equation for the surface tension and the Bernoulli 
equation applied at the bubble boundary, r = R(3, t) 
results in the so-called dynamic boundary condition. If 
the normal viscous stresses are neglected, the latter 
condition, written in spherical coordinates, and as- 
suming rotational symmetry in the horizontal plane 
(see Fig. 1) is 

(1 -(aZR/a3z)R-1+2(aR/a3)*R-z) 

R{l+(dR/~9)2R-2}3’2 

I- R-“cot3aR/a3 
+ Rfl + (aR,,a3)2R_2j 1 = 0, r = WA 0. (2) 

The kinematic boundary condition in the same coor- 
dinates is expressed by 

E - $ + ~~~ = 0, r = R(3, t). 
: : 

(3) 

Equation (1) and the boundary conditions (2) and (3) 
represent the set of equations to be solved in com- 
bination with prescribed initial conditions and gas 
pressure p,. 

It is import~t to emphasize here that equation (2), 
and in particular equation (3), may generally be 

3 r & R 

FIG. 1. Bubble with coordinates r, 9 and R. 

applied to r = R, (3, t), which results in a multivalued 
solution for the bubble radius at a discrete angle and a 
fixed time (see Section 3.2. and Fig. 3). 

3. METHOD OF SOLUTION 

3.1. The collocation method 
The solution of equation (1) for rotational symmetry 

without singularities in 9 = 0 and r -+ x has the 
following form : 

d(r, 3, t) = f, n,(t)-&-P,(cos 3). 
k=O 

(4) 

For the velocity potential at discrete angles, 3,. at the 
bubble boundary the folIowing expression holds : 

s&r. ,‘$, t) = g + 2 f, r = R(3, t). (5) 

Substitution of equations (2) and (3) into equation (5) 
results in the dynamic boundary condition at r = 
R( 3i, t) as it has been used for numerical integration. 

An expression for the bubble radius in the form of a 
series expansion similar to equation (4) can only be 
used if the bubble radius is single-valued, i.e., if for 
every angle, 9, there is only one value R( 3). However. 
this latter restriction is not satisfied when bubble 
implosion and fragmentation are considered. In prin- 
ciple, the equations (2) and (4) in combination with an 
expression for the bubble radius, R = R(3, t), and with 
the initial conditions and the condition for p,, can be 
used to describe the flow-field and the coordinates of 
growing or imploding bubbles [4-7, 111. Zijl et al. 
[4, 6, 111 and Joosten et al. [7] applied the (global, 
orthogonal) collocation method [lo] to solve this set 
of equations numerically. 

In equation (4) the series is truncated after N terms. 
The l-dim. bubble boundary is discretized into N so- 
called collocation points, each of them representing a 
value of 3: the collocation angles $. 

The expansion coefficients, ak(t), k = 0,. N - 1, 
are chosen in such a way, that only at these collocation 
angles, the solution of the truncated series (4) satisfies 
the boundary conditions equations (4) and (5). It is 
noted that the values of cos gi are chosen as the zeros of 
a Legendre polynomial. In that case, convergence to 
the exact solution for N + 3c can be guaranteed [4,8, 
111. 

3.2. The method o~characteristics 
Generally, the bubble radius R = R(3, t) is not 

single-valued for an imploding bubble (see Fig. 3). 
Hence, the expansion of the bubble radius in a 
complete set of Legendre polynomials (see Section 
3.1.) is useless for finding a multivalued solution of the 
bubble radius. Therefore, the kinematic boundary 
condition (3) will be considered as a quasi-linear 
partial differential equation (P.D.V.) of the following 
form : 
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where A Ir A,, A, are coefficients. 
Suppose R = R(3, t) is a solution of the P.D.V. (6). 

This solution corresponds to an integral surface in the 
3-dim. (3, t, R)-continuum with orthogonal~oordi~ates. 
On the integral surface, characteristic curves can be 
constructed [9]. By means of the parametric repre- 
sentation, 3 = 3(s), r = t(s), R = R(s), of these 
characteristics, the equations for the characteristics 
take the following form : 

(7) 

The uniqueness of equation (7) is guaranteed if initial 
conditions are prescribed on an initial curve which is 
not a characteristic itself i.e. 

:3(s,) = 3,, t(so) = t,, R(s,) = R,. 

Now equations (6) and (7) will be compared with 
equation (3). substitution of s = E into equation (7) 
results in the characteristics of equation (3) and they 
have the following form: 

d3 1 i‘# _=--.....-~ 
dr R2 ?:+ 

(8) 

dR alp 
X-= i 1 -G- rzR‘ (9) 

Using equations (8) and (9), a mult~valued solution of 
the bubble radius is possible and finds expression in 
the intersection of the base characteristics i.e. in the 
projections of the characteristics in the 3, t-plane (Fig. 
2). Consequently, when using the method described 
above, the deformed bubble boundary may have 
different bubble radii at one discrete angle and one 
fixed time (Fig. 3). 

4. THE NUMERlCAL METHOD 

The collocation method described in Section 3.1. is 
applied to solve the equations (2)-(4) and results in a 
set of N coupled, non-linear ordinary differential 
equations for the velocity potential 

$ #, = F(R,, +j);i-;, i = O(l)N - 1 (10) 

l-r 1 Ik+l 1 

(11) 

FIG. 2. Integral surface 1 with characteristics K f and I( 2 from 
the initial curve L at 9, respectively 3,. The base characteri- 
sitics K’, and K; show a multivated solution of R(9, t) in the 

point of intersection J. 

with 

R,(t) = R($, t). 

The matrix equation (11) must be solved for every 
timestep. This can be performed by numerical stan- 
dard routine (LU decomposition). The initial con- 
ditions are 

#i(o) = 0, Rj(0) = 0. (I21 

However, at the collocation points, where the velocity 
potential (11) has to be determined for reasons men- 
tioned in Section 3.1, an equation for the bubble 
radius, Rift), is missing. Hence a linear interpolation 
procedure is introduced. 

where R,(t) = R(,Y,, r)denotes the characteristic bubble 
radius, i.e. the coordinate of a characteristic point that 
coincides with both the bubble wall and the 
characteristic. 

The discrete interpolation angles, A& and AS,,.,, 
chosen between the~ll~tion angies, serve as weight- 
ing factors such that Ri(t) coincides the adjacent 
characteristic radius for A,‘), = 0 or A&+ r = 0. 
Moreover, even for large deformations of the bubble 
wall, the volume of the bubble can be exactly de- 

FIG. 3. Three-valued solution of the bubble radius: Iti, R, 
and R,. The characteristics K,, K, and K, do not intersect. 
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termined by rotationally symmetric integration if the 
l-dim. bubble wall is described by Ri of equation (13) 
with continuous variable A,$ [12]. 

The numerical procedure to be used is as follows: 
(i) Initially the coefficients a,(O) will be determined 

by means of equations (11) and (12), and the derivatives 
&$Jd3 and &$Jdr can be calculated analytically. 

(ii) Initially the characteristic points are chosen at 
the bubble wall between the collocation points. The 
derivative ddJd3 and &$,/ar will be calculated using 
the matrices P, (cos 9,), {dp(cos 9)/d3},. 

(iii) After each timestep, At, the new characteristic 
radii will be determined with equations (8) and (9). In 
the examples presented in this paper a simple Euler 
integration method has been used. 

(iv) Both the bubble radii and their derivatives have 
been determined at the collocation angles applying 
linear interpolation see equation (13). 

(v) d4Jdt has been calculated using equation (5) for 
time t. Subsequently, using the Euler method, the new 
4i has been calculated at a time t + At at the 
collocation points. After this, the procedure was 
repeated for each timestep consecutively. 

5. COMPRESSIBILITY EFFECTS 

5.1. Spherically symmetric vapour bubble implosion 
It is significant to compare the numerical results to 

those of suitable experiments on vapour bubbles. At 
present, only the buoyancy-induced deformation of a 
translating bubble has been taken into account (see 
Section 2). Consequently, thermal and diffusive effects 
are neglected in the analysis. However, for an imploding 
vapour bubble, heat diffusion will be of importance. In 
this case, heat of condensation is liberated at the 
bubble boundary and the energy has to be involved in 
the analysis. Nevertheless, the vapour in the bubble can 
be treated as a compressible gas if no condensation 
occurs. Therefore, to conclude whether the numerical 
results are applicable to vapour bubbles, it is necessary 
to check during which stage of the bubble implosion 
the thermal and compressibility effects are important. 

In this respect, the behaviour of the gas or vapour 
phase for a radially imploding (or expanding) bubble 
in a subcooled (or superheated) liquid will be 
considered. 

5.2. Compressible bubbles 
Since p, << p, disturbances in the pressure of the 

gaseous phase within a closed volume are damped 
away much more rapidly than in the liquid. 

Consequently, if viscosity effects are neglected, the 
pressure in the gaseous phase may be assumed to be 
homogeneous i.e. 

vp, = 0. (14) 

For simplicity a spherical bubble is considered. Con- 

HMT 25:8 - c 

servation of total mass at the spherical liquid-vapour 
interface results in 

Pl(UI - fJ) = P(U - d). 

In the case under consideration where phase tran- 
sition, i.e. condensation, at the interface is excluded, 
equation (15), under the condition p1 << p, becomes 
equivalent to the well-known kinematic boundary 
condition u = l?. 

The thermal boundary condition at the vapour- 
liquid interface r = R(t) is given by 

Equation (16) expresses that the heat required for 
condensation or evaporation must be removed or 
supplied by conduction through the liquid and the 
vapour adjacent to the bubble boundary. With the 
help of the equations of continuity and energy for the 
vapour taken as an ideal gas without viscous dissi- 
pation, in combination with equation (14), Cho and 
Seban [13] derived the following expression for the 
radial vapour velocity at the interface : 

dp, R c ___2 

dl 3 cp, ’ 
r=R. (17) 

Under the assumption A, << 1 and a, >> a, the 
temperature differences in the vapour can be neglected. 
Combination of equation (16) and equation (17) 
results then in 

When the absolute value of the first term between 
brackets in the RHS of equation (18) is much larger 
than the second one, condensation or evaporation 
occurs at the bubble boundary during implosion or 
growth respectively and compressibility effects may be 
neglected. However, if I(8T/dr),,, = 0 in the LHS of 
equation (18), heat transfer effects at the bubble 
boundary may be neglected and compressibility of the 
vapour dominates implosion or growth. According to 
equation (18), for sufficiently small disturbances in the 
vapour pressure, the vapour can thus be treated as a 
compressible gas, if 

1 dR l dp, --_5 _--. 
R dt 3~~1 dt 

In turn, if equation (19) is satisfied, the implosion is 
governed by liquid inertia and the bubble radius is 
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given by the so-called Rayleigh-Plesset equation [ 141 

#R + ;R2 = !+ _ f, (20) 

This equation can also be derived from equation (5) 
and equation (4) for k = 0, i.e. in case of a spherically 
symmetric flow field. 

Let the perturbation in the bubble radius be repre- 
sented by 

R(t) = R, + c(t). (21) 

In the following discussion it will be assumed that 1 E(t)/ 
<< R, in such a way, that terms in powers of E, 8 and 
higher derivatives greater than one may be neglected. 
Substitution of equation (21) into equation (20) and 
linearization results in 

R 
0 

F=P1 -P7 
(22) 

P 

if the surface tension term has been neglected. 
Comparison of equation (22) with the first and 

second terms between brackets in the RHS of equation 
(18) shows that these terms have amplitudes of C(‘(t,)/w 
and ~t,)wpR~/3p,y, respectively. Consequently, the 
vapour can be treated as a compressible gas if 

{pR%~(t,)/y:p x ) >> {iV,)/m) or 

(23) 

Provided that (l/R,)l~l 2 w, substitution of o into 
equation (23) results in IdR/dt) E (3p,y,/p)‘@, con- 
sequently, it follows that the vapour behaves as a 
compressible gas if 

(24) 

On the other hand, if IdR/dt) << (3p,y,/p)‘j2, mainly 
condensation occurs and compressibility effects of the 
vapour may be neglected. Supposing that a point fixed 
at the imploding bubble wall follows the largest 
deformation from onset. Possibly, such a deformation, 
or the resulting fragmentation, can be expected at 
vapour bubbles if the radial velocity of the bubble wall 
at that point satisfies condition (24). Nevertheless all 
examples presented in Section 6 satisfy condition (24). 

6. -NbERICAL EXAMPLES 

6.1. Rotationally symmetric bubble implosion 
For gas bubbles, the pressure p1 in equation (2) is 

replaced by the isentropic law 

PIG) = PI ,O{~O/WY~~ (25) 

We consider the hypothetical case of y, = 1, i.e. when 

Direction of translation 
axis of symmetry 

FIG. 4. Numerically calculated profile of a free translating 
isothermal gas bubble, imploding in a pressure field at various 
instants, N = 9. Curve (1): p, = 1.9kPa, t, = lO.OOOOms, 
Curve(2):p, = 4.55kPa,t, = 10.983ms,p, = 1 kPa,p,,, = 
0.25 kPa, R, = lOmm, y, = 1, p = 103kgm-” g = 

9.81 m se2. 

equation (25) represents the ideal gas law, this case 
applies to isothermal (gas) implosion. During im- 
plosion, the internal pressure is increasing according 
to equation (25) and, due to the inertia of the liquid, it 
exceeds the liquid pressure p,. after a certain time. 
Consequently, the bubble will start growing and, for 
sufficiently large times, the bubble volume oscillates. 
Here, only the first implosion stage has been con- 
sidered with pi(t) given by equation (25). However, the 
bubble will hardly implode for realistic values of the 
internal pressure, p,(t), and the liquid pressure, p,, 
(e.g. for p, = 100 kPa and p,(O) = 99 kPa, the ratio 

R*IRo 5 0.99, where R* = R(t*) is the radius of the 
spherical bubble at advanced implosion with internal 
pressure pl(t*) = p,). Therefore, some calculations 
have been made at a pressure difference Ap = p, - p, 
= Pl,O - P, = constant, i.e. the implosion rate has 
not been slowed down by the compressibility ofthe gas 
(Figs. 6 and 7). Figs. 4-6 show nearly the same bubble 
shape for both isothermal implosion and implosion 
with constant Ap. Therefore, it seems to be justified to 
study bubble deformation during implosion at con- 
stant internal pressure. Since, due to buoyancy (see 
Section 2), the bubble translates and the origin of the 
coordinate system has been fixed at the bubble centre. 
The translation velocity of the origin u,, (initially ut, = 
0) is positive in the direction opposite to gravitational 
acceleration and it is defined by i(&n, t) - i?(O, t)}. In 
the figures the origins coincide for the different im- 
plosion stages. Because of the rotational symmetry (see 
Section 2) the bubble shape at various instants has 
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Dlrrctlon of trmrlotlon 
0x1s of symmetry 

FIG. 5. Numerically calculated profile of a free translating 
isothermal gas bubble, imploding in a pressure field at various 
instants, N = 5. Curve (1): p4 = 1.77kPa, t, = 9.9SOms, 
Curve (2): p, =5.88 kPa, t, = 11.021 ms, other values as Fig. 4. 

DIrectIon of tranrlotlon 

FIG. 6. Numerically calculated profile of a free translating 
hollow_ cavity, imploding in a pressure field at various 
instants, N = 9. A small bubble detaching at its rear. Curve 
(I) t, = 7.000ms, Curve (2) t2 = 9.OOOms Curve (3) t, = 

9.092 ms. p, = 0 kPa, other values as Fig. 4. 

4 
--- 

--__ 5 

6 

-. 
‘6 

FIG. 7. Numerically calculated profile of a free translating 
hollow cavity, impliding in a pressure field at various instants, 
N = 9. Onset of detachment as well at the top of the bubble as 
at its rear. Curve (I) f1 = 1.0970 ms, Curve (2) t, = 1.0977 ms, 
Curve (3) t, = 1.0977ms. pm = 100 kPa, p1 = 20 kPa, other 

values as Fig. 4. 

been drawn for values of 9 in the interval [0, n]. 
Initially [situation (0)], N + 1 characteristic points R, 
are chosen at the bubble wall. The radially directed 
drawn curves are characteristics, the dashed curves are 
the collocation angles, see Figs. 4-8. 

The examples that follow have been calculated with 
the Burroughs B-6700 computer of the Eindhoven 
University of Technology. 

6.2. Compressible bubbles 
Figure 4 shows an imploding gas bubble at an initial 

pressure pi(t) according to equation (25). The maxi- 
mum radialvelocity of the bubble wall l&(t)l,,, for I= 
9 and t, 5 t I t, shows physically realistic values 
around the sonic speed of water (1.5.103 m s-‘) while 
I&(tl)lmi. = 2.13 m s-l for I = 2 and IRl(tz)l,,,in = 
1.90m s-l for I = 3. Also fragmentation occurs: a 
small bubble detaches at the rear of the original one 
(see also the inset of Fig. 6). For t = t,, the implosion 
rate has almost been slowed down completely. The 
imploding gas bubble, shown in Fig. 5, differs only with 
the conditions used in Fig. 4 for N = 5 although both 
figures show nearly the same bubble shape. Also the 
numerically calculated radial velocities of the bubble 
wall agree for the various instants of Figs. 4 and 5. They 
amount for t = t,, IR,+,(tl)lma, = 2.1 ms-’ (Fig. 4) 
respectively IR1=s(fi)lm., = 2.3 ms-’ (Fig. 5). The 
corresponding theoreticalvalue, given by equation (24) 
for both Fig. 4 and Fig. 5 [see text, Section 5.2. after 
equation (24)] is R = 1.7 m s-l. Both Fig. 4 and Fig. 5 
show a multivated solution for t = t2 because 3, =9 < 
9, = 10 and 9, = 5 < 9, =6 respectively. 
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Direction of tranSfCItiOn 
axis of symmetry 

l----2 i=l 

FIG. 8. Deformation of an accelerated bubble at a pressure of 
1 kPa; tongue formation occurs at the rear of the bubble, N 
= 5.Curve(l)t, = 23SOOms,Curve(2)t, = 24.813ms,p, = 

P, = 1 kPa other values as Fig. 4. 

6.3. Imploding bubbles with constant internal pressure 
Figure 6 shows an imploding hollow cavity. This 

shows that the implosion rate has not been slowed 
down by the compressibility of the gas. However, there 
is avery good agreement with the bubble shapes shown 
in Fig. 4 and Fig. 5 (see Section 6.1.). The inset of Fig. 6 
for t = t, shows clearly a multivalued solution of the 
bubble radius (dotted line) the detachment of a small 
bubble at the rear i.e. fragmentation. The maximum 
radial velocity of the bubble wail /f?,(t)\,,, = 4.47 x 
1010ms-1for~=9,~=r~and7.0ms~‘for~=9,r= 
t,. For all instants \@,(t)j,i, < 3.66m s-l. 

Figure 7 shows an imploding gas bubble with 
constant internal pressure. Here, in contradistinction 
to Fig. 6, deformation of the bubble wall occurs for R 

< 10e3 m due to the large value of lAp( = 80 kPa. 
There multivalued solution of R( ,!J, ts) because 9< _ 1 < 
4 = 1. The maximum radial velocity of the bubble wall 
Id,(t)/,,, = 3.03 x 106m s-l for 1 = 10, t = t, and 
1.76 x lo3 m s-’ for 1 = 10, t = t2. For all instants 
Idl(t)lmin < 470.1 ms-’ holds. 

Figure 8 shows the deformation of the bubble wall of 
an accelerated ascending bubble for Ap = 0. The 
deformation can be followed via the characteristics. 
The ultimate shape for t > 24.813 ms is a toroidal 
bubble, in agreement with experimental results of 
Walters and Davidson [ 161. 

Finally, the calculated initial acceleration for Figs. 

4- 8 equals 2g in agreement with Walters and David- 
son [16] and Zijl [5]. 

7. Co\;CLLIsIcM3 

For almost all calculated examples, the maximum 
radial velocity of the bubble wall at large rates of 
deformation or fragmentation is of the order of 
magnitude of the liquid sonic speed. When this occurs 
the compressibility of the liquid, which has been 
neglected in this paper, needs to be taken into account. 
Otherwise it is observed that large rates ofdeformation 
or fragmentation of the bubble wall occur in the 
situation where bubble implosion is controlled by 
inertia of the liquid. Plesset and Mitchell [17] in- 
vestigated the stability of perturbation terms of ex- 
panding and collapsing bubbles, assuming the press- 
ure inside the bubble to be constant. They conclude 
that an expanding bubble is stable while an imploding 
one is not. In the latter case the distortion amplitude 
grows as R ’ 4 when the bubble radius R tends to zero. 
The buoyancy term gRcos B in equation (2) accounts 
for deformation only and not for instability. 

Evidently, the initial perturbations, expressed by the 
coefficients ~~(0) # 0, k = i( 1 )N, g G 0, agree with the 
so-called Taylor instabilities [18]. A combination of 
gravitational effect and Taylor instability results in the 
presented deformations. For advanced implosion, e.g. 
for decreasing R, the latter effect dominates the effect of 
gravitation (gRcos 8) in agreement with the numerical 
examples. Fragmentation ofvapour or gas bubblescan 
be described with the method of characteristics com- 
bined with the method of collocation as presented 
here. Detachment of small bubbles from the original 
bubble occurs in combination with well-known jet 
formation at the rear of the bubble : the accompanying 
translation velocity u,, changes very fast. 
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APPLICATION DE LA METHODE DES CARACTERISTIQUES A LA RESOLUTION 
NUMERIQUE DE L’IMPLOSION ET DE LA FRAGMENTATION DES BULLES DE GAZ 

R&mn&On etudie numeriquement l’implosion dune bulle ascendante de gaz dans un liquide irrotationnel, 
incompressible et intiniment Ctendu. La methode de collocation combinee avec la methode des caracttristi- 
ques a Ctt appliqued aux solutions du rayon de la bulle. Avec cette methode est d&rite la fragmentation 
resultant des deviations, induites par les forces d’Archim&ie, a partir de la forme spherique de la bulle. De 
facon a relier les resultats calcules pour les bulles de gaz et de vapeur, on presente une estimation de la vitesse 
radiale minimale d’implosion quand l’inertie de liquide domine les effets de temperature a la front&e de la 
bulle. Les resultats montrent qu’en plus de la formation d’un jet, il y a un detachement de petites bulles de gaz 

pendant le mode d’implosion contrdlt par l’inertie. 

ANWENDUNG DES CHARAKTERISTIKEN-VERFAHRENS BE1 DER NUMERISCHEN 
L&SUNG DES IMPLOSIONS- UND FRAGMENTATIONS-VERLAUFS VON GASBLASEN 

Zusammenfassung-Die Implosion einer aufsteigenden freien Gasblase in einer rotationsfreien, inkompres- 
siblen, unendlich ausgedehnten Fliissigkeit wurde numerisch untersucht. Urn mehrdeutige Losungen fur den 
Blassenradius in Betracht zu ziehen, wurde die mit dem Charakteristiken-Verfahren kombinierte Kolloka- 
tions-Methode angewandt. Mit diesem Verfahren wurde die durch auftriebsbedingte Abweichung von der 
Kugelform hervorgerufene Fragmentation beschrieben. Urn die Beziehung der fiir Gasblassen berechneten 
Ergebnisse zu Dampfblasen herzustellen, wird fur die minimale radiale Dampf-Implosions-Geschwindigkeit, 
bei der die Tragheits-Effekte der Fliissigkeit gegeniiber thermischen Effekten an der Blasengrenze noch 
uberwiegen, eine Abschltzung angegeben. Neben der Ausbildung eines Strahls zeigen die Rechenergebnisse 

die Ablosung kleiner Gasblasen w&end der durch Tragheitskrafte bestimmten Implosionsphase. 

YMCJIEHHOE HCCJIEAOBAHHE IIPOHECCA CXJIOIIbIBAHMII B APO6JIEHMR 
FA3OBbIX fIY3bIPbKOB METOAOM XAPAKTEPMCTMK 

AHHOT~UIISI - IIpoaeneno qncnenuoe wcnenoBaHHe cxnonbmamm c~060m10 acnnbmamuero ra3oBoro 

ny3bIpbaa B HeorpaHsreHHoM o6aeMe HenoAeHmHofi HecmMaeMofi ~~~KOCTH. B pememni 3aAaSH 0 
panAyCe ny3bIpbKOB BCnOJIb30BaJICI MeTOll KOJIIlOKaUUii B KOM6UHaLWU C MeTOAOM XapaKTepHCTHK, 

ST0 nO3BOJIKnO nOJIyWTb HeCKOJIbKO peI,IeHHk 3TO LlaJIO BOSMOEHOCTb OnACaTb npo6neese nyJbIpb- 

KOB, npOHCXOnaIUee B pe3yJIbTaTe WX OTKJIOHeHHIl OT C@pWieCKOii @OpMbI nOa AeiiCTBHeM IlOJWeMHbIX 

CWI. &In o606memin pe3yJIbTaTOB, nOJIy’ieHHbIX NIX ra3OBbIX nyJbIpbKOB, Ha CJIy’laii napOBbIX 

ny3bIpbKOB I,pOB‘XeHa OUeHKa MHHWMaJIbHOfi paJW,IbHOii CKOpOCTB LSCnapeHAK BHyTpb IIy3bIpbKa, 

KOrLla HHepUUR mWKOCTW Il~BaJIHpyeT Han TeMIIepaTypHbIMB 3+&KTaMW Ha rpaHHUe. Pe3yJIbTaTbI 

nOKa3bIBaH)T, ‘IT0 IIOMWMO o6pasoaamix CTpyH B Te’IeHHe BCWO IIepHOna CXJIOnbIBaHkiR npOkiCXOLWT 

OTpbIB He6OJIbLIJkiX ra30BbIX ny3bIpbKOB. 


